--- /dev/null
+import re
+import pandas as pd
+import math
+from functools import reduce
+import argparse
+import os
+import sqlite3
+from itertools import chain
+
+model_filename = os.path.join(os.path.dirname(os.path.realpath(__file__)), "model.db")
+
+def genmod():
+ corpus_path = "./corpus/"
+ df_list = []
+ for file in os.listdir(corpus_path):
+ if file.endswith(".csv"):
+ df = pd.read_csv(corpus_path+file, header=0, names=['hanji', 'lomaji'])
+ df_list.append(df)
+ df = pd.concat(df_list)
+ df['lomaji'] = df['lomaji'].str.lower()
+
+ new_data = []
+
+ for index, row in df.iterrows():
+ hanji = list(filter(lambda x : re.match("[^、();:,。!?「」『』]", x), list(row['hanji'])))
+ tl = re.split(r'(:?[!?;,.\"\'\(\):]|[-]+|\s+)', row['lomaji'])
+ tl2 = list(filter(lambda x : re.match(r"([^\(\)^!:?; \'\",.\-\u3000])", x), tl))
+ new_data.append((hanji, tl2))
+ if (len(hanji) != len(tl2)):
+ raise ValueError(f"length of hanji {hanji} is different from romaji {tl2}.")
+
+ #model_filename = "model.db"
+ try:
+ os.remove(model_filename)
+ except OSError:
+ pass
+
+ con = sqlite3.connect(model_filename)
+ cur = con.cursor()
+ cur.execute("CREATE TABLE pronounce(hanji, lomaji, freq)")
+
+
+ char_to_pronounce = {}
+
+ for i in new_data:
+ hanji = i[0]
+ lomaji = i[1]
+ for j in range(len(i[0])):
+ if not hanji[j] in char_to_pronounce:
+ char_to_pronounce[hanji[j]] = {lomaji[j] : 1}
+ elif not lomaji[j] in char_to_pronounce[hanji[j]]:
+ char_to_pronounce[hanji[j]][lomaji[j]] = 1
+ else:
+ char_to_pronounce[hanji[j]][lomaji[j]] += 1
+
+
+ for i in char_to_pronounce.keys():
+ hanji = char_to_pronounce[i]
+ for j in hanji.keys():
+ cur.execute("INSERT INTO pronounce VALUES(?, ?, ?)", (i,j, hanji[j]))
+
+ all_chars = char_to_pronounce.keys()
+ init_freq = {} #詞kap句開始ê字出現次數
+ cur.execute("CREATE TABLE initial(char, freq)")
+
+
+ for i in new_data:
+ head_hanji = i[0][0]
+
+ if head_hanji in init_freq:
+ init_freq[head_hanji] += 1
+ else:
+ init_freq[head_hanji] = 1
+
+ #補字
+ min_weight = 0.1
+
+ for i in all_chars:
+ if not i in init_freq.keys():
+ init_freq[i] = 0.1
+
+ for i in init_freq.keys():
+ cur.execute("INSERT INTO initial VALUES(?, ?)", (i, init_freq[i]))
+
+ char_transition = {}
+ cur.execute("CREATE TABLE transition(prev_char, next_char, freq)")
+
+ for i in new_data:
+ hanji = i[0]
+ for j in range(len(i[0])-1):
+ this_hanji = hanji[j]
+ next_hanji = hanji[j+1]
+ if not this_hanji in char_transition:
+ char_transition[this_hanji] = {next_hanji : 1}
+ elif not next_hanji in char_transition[this_hanji]:
+ char_transition[this_hanji][next_hanji] = 1
+ else:
+ char_transition[this_hanji][next_hanji] += 1
+
+ for i in char_transition.keys():
+ next_char = char_transition[i]
+ for j in next_char.keys():
+ cur.execute("INSERT INTO transition VALUES(?, ?, ?)", (i, j, next_char[j]))
+
+
+ #get_homophones("lí", cur, con)
+
+ con.commit()
+ con.close()
+
+def get_homophones(pron, cur, con):
+ homophones_raw = cur.execute("select hanji FROM pronounce where lomaji = ?", (pron, )).fetchall()
+ homophones = list(map(lambda x: x[0], homophones_raw))
+
+ return homophones
+
+def convert(sentences):
+ splitted = re.split(r'(:?[!?;,.\"\'\(\):])', sentences)
+ splitted_cleaned = list(filter(lambda x : x != '', splitted))
+
+ result = list(map(lambda s : convert_one_sentence(s), splitted_cleaned))
+
+ flatten_result = [x for xs in result for xss in xs for x in xss]
+ result_string = "".join(flatten_result)
+
+
+ print(result_string)
+ return result_string
+
+def convert_one_sentence(sentence):
+ full_width = ["!", "?", ";",":",",","。", "(", ")"]
+ half_width = ["!", "?", ";", ":", ",", ".", "(", ")"]
+
+ if len(sentence) == 1:
+ for i in range(len(half_width)):
+ if sentence[0] == half_width[i]:
+ return [[full_width[i]]]
+
+
+ weight = 2/3
+
+ splitted = re.split(r'(--?|\s+)', sentence)
+ filtered = list(filter(lambda x :not re.match(r'(--?|\s+)', x), splitted))
+ small_capized = list(map(lambda x : x.lower(), filtered))
+
+ con = sqlite3.connect(model_filename)
+ cur = con.cursor()
+
+ homophones_sequence_raw = list(map(lambda x : get_homophones(x, con, cur), small_capized))
+
+ homophones_sequence = [list(map (lambda x : {"char": x,
+ "prev_char": None,
+ "prob" : 1}, i)) for i in homophones_sequence_raw]
+
+
+
+ head_freqs = list(map(lambda x : x[0], cur.execute('''select initial.freq FROM initial
+ INNER JOIN pronounce ON pronounce.hanji = initial.char
+ WHERE pronounce.lomaji = ?''', (small_capized[0], )).fetchall()))
+
+ return_result = [None] * len(small_capized)
+
+ if head_freqs == []:
+ return_result[0] = filtered[0]
+ homophones_sequence[0] = [{"char": filtered[0],
+ "prev_char": None,
+ "prob" : 1}]
+
+ else:
+ head_freq_total = reduce(lambda x , y : x + y, head_freqs)
+
+ for i in homophones_sequence[0]:
+ i_freq = cur.execute('''select initial.freq FROM initial
+ WHERE initial.char = ?''', (i['char'])).fetchall()[0][0]
+
+ i['prob'] = i_freq / head_freq_total
+
+
+ #for i in homophones_sequence[0]:
+
+
+
+ if len(small_capized) == 1:
+ max_prob = -math.inf
+ max_prob_char = None
+ for i in homophones_sequence[0]:
+ if i['prob'] > max_prob:
+ max_prob_char = i['char']
+ max_prob = i['prob']
+
+ return_result[0] = max_prob_char
+
+ else:
+ for i in range(1,len(small_capized)):
+ char_freqs = list(map(lambda x : x[0], cur.execute('''select initial.freq FROM initial
+ INNER JOIN pronounce ON pronounce.hanji = initial.char
+ WHERE pronounce.lomaji = ?''', (small_capized[i], )).fetchall()))
+
+ if char_freqs == []:
+ return_result[i] = filtered[i]
+ homophones_sequence[i] = [{"char": filtered[i],
+ "prev_char": None,
+ "prob" : 1}]
+ prev_char = ""
+ max_prob = -math.inf
+ for m in homophones_sequence[i-1]:
+ if m['prob'] > max_prob:
+ max_prob = m['prob']
+ prev_char = m['char']
+ homophones_sequence[i][0]['prob'] = max_prob
+ homophones_sequence[i][0]['prev_char'] = prev_char
+ else:
+ total_transition_freq = cur.execute('''
+SELECT sum(t.freq)
+FROM transition as t
+INNER JOIN pronounce as p1 ON p1.hanji = t.prev_char
+INNER JOIN pronounce as p2 ON p2.hanji = t.next_char
+where p2.lomaji = ? and p1.lomaji = ?''',
+ (small_capized[i], small_capized[i-1])).fetchall()[0][0]
+ for j in homophones_sequence[i]:
+ prev_char = None
+ max_prob = -math.inf
+
+ for k in homophones_sequence[i-1]:
+ k_to_j_freq_raw = cur.execute('''select freq from transition
+where prev_char = ? and next_char = ? ''', (k["char"], j["char"])).fetchall()
+ if k_to_j_freq_raw == []:
+ den = cur.execute('''
+SELECT sum(p.freq)
+FROM pronounce as p
+inner join pronounce as p2
+on p.hanji = p2.hanji where p2.lomaji = ?''', (small_capized[i],)).fetchall()[0][0]#分母
+ #分子
+ num = cur.execute(''' SELECT sum(freq) FROM pronounce as p where hanji = ?''', (j["char"],)).fetchall()[0][0]
+
+ k_to_j_freq = num/den * (1-weight)
+
+ else:
+ num = k_to_j_freq_raw[0][0]
+ don = total_transition_freq
+ k_to_j_freq =num/don * weight
+
+ if k_to_j_freq * k["prob"] > max_prob:
+ max_prob = k_to_j_freq * k["prob"]
+ prev_char = k["char"]
+
+ j["prob"] = max_prob
+ j["prev_char"] = prev_char
+
+ max_prob = -math.inf
+ current = ""
+ prev_char = ""
+ for i in homophones_sequence[len(homophones_sequence)-1]:
+ if i["prob"] > max_prob:
+ max_prob = i["prob"]
+ current = i["char"]
+ prev_char = i["prev_char"]
+
+
+
+ return_result[len(homophones_sequence)-1] = current
+
+ for i in range(len(homophones_sequence)-2, -1, -1):
+ current_ls = list(filter(lambda x : x["char"] == prev_char,
+ homophones_sequence[i]))
+
+ return_result[i] = prev_char
+ current = current_ls[0]["char"]
+ prev_char = current_ls[0]["prev_char"]
+
+
+
+
+ return return_result
+
+
+def poj_to_tl(sentence):
+ return sentence
+
+parser = argparse.ArgumentParser()
+parser.add_argument('--genmod', help='generate the model', action='store_true',
+ required=False,)
+
+parser.add_argument('sentence', metavar='SENTENCE', nargs='?',
+ help='the sentence to be converted')
+parser.add_argument('--form', metavar='FORM', choices=["poj", "tl"], nargs=1,
+ default=['poj'],
+ help='the orthography to be used (poj or tl). Default is poj.')
+
+args = parser.parse_args()
+
+if args.genmod == True:
+ genmod()
+elif args.sentence != None:
+ if args.form == ['poj']:
+ sentence = poj_to_tl(args.sentence)
+ convert(sentence)
+ else:
+ convert(args.sentence)
+else:
+ parser.print_help()
+